
1 Functions of Several Variables 2021-22

Notation

The subject of this course is the study of functions f : Rn → Rm. The

elements of Rn, for n ≥ 2, will be called vectors so, if m > 1, f will be said

to be a vector-valued function of several variables. If m = 1 we will say f is

scalar-valued. Note my use of bold face for vectors, in lectures I will have to

underline the symbol.

All vectors should be written vertically and we will follow the so called

‘contravariant convention’ of using superscript labels for coordinates of vec-

tors. So v ∈ Rn is written in coordinates as

v =


v1

v2

...

...

vn


where each coordinate vi ∈ R. Though I might write vertical vectors in

lectures it would be wasteful of space in lecture notes so I will type this as

v =
(
v1, v2, · · · , · · · , vn

)T
.

Even in lectures I may not have the room for vertical vectors and may write

them horizontally, but without the superscript T .

For a sequence of vectors we will use subscripts v1,v2, etc. We may then

put these vectors into a matrix

(v1,v2, ...,vm) =

 ↑ ↑ ↑
v1, v2, ..., vm
↓ ↓ ↓

 =


v11 v12 v13 · · · v1m
v21 v22 v23 v2m
...

...
...

...
...

...
...

...

vn1 vn2 vn3 · · · vnm

 .

I would recommend remembering the labeling in this matrix as a mnemonic

for remembering the super and sub-script labeling.
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An important sequence of vectors is the standard basis for Rn, denoted

by ei, 1 ≤ i ≤ n. So ei has 1 in the i - th coordinate, 0 elsewhere. Then

v ∈ Rn can be written as

v =
n∑
i=1

viei,

with each vi ∈ R for 1 ≤ i ≤ n.

Proofs

Many proofs of results for vector-valued functions of several variables are

based on the ideas seen in the proof of the equivalent result for scalar-valued

functions of one variable, i.e. results seen in MATH20101 or MATH20111.

Such proofs will not given. I will say they are not given because no new ideas

are required.

But lots of proofs are given; this is not a ‘calculus’ course concerned only

with calculation and application, but an ‘analysis’ course concerned with why

a result holds. The proofs we give will make essential use of the fact that in

Rn there are many paths to a given point whereas in R there are far fewer.

(Such a difference also exists between C - analysis and R - analysis.)

The methods we develop also lead to alternative proofs of results which

also have ‘proofs with no new ideas’, such as the Limit Laws for functions of

several variables. These alternative proofs will be given.

Unless stated otherwise all proofs given in the notes should be learnt.

1.1 Limits of vector-valued functions of several vari-

ables.

Most of the results on limits of real-valued, or what will be called in this

course scalar-valued, functions of one real variable generalise in a straight-

forward way to limits of vector-valued functions f : A ⊆ Rn → Rm of

several variables.
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For x ∈ Rn define |x|2 =
∑n

i=1 (xi)
2
. Perhaps the most useful observations

are that

• |xi| ≤ |x| for 1 ≤ i ≤ n, and

• the triangle inequality, |x + y| ≤ |x|+ |y| for all x,y ∈ Rn.

The triangle inequality can be applied n−1 times to prove

• |x| ≤
∑n

i=1 |xi| .

Definition 1 Given a point a ∈ Rn and a real number δ > 0 the open ball

Bδ(a) = {x ∈ Rn : |x− a| < δ}

is call a neighbourhood or δ - neighbourhood of a. We say that Bδ(a)

has centre a and radius δ.

The set

B′δ(a) = {x ∈ Rn : 0 < |x− a| < δ} = Bδ(a)\{a}

is called a punctured or deleted neighbourhood of a.

Definition 2 Assume that f : A ⊆ Rn → Rm is a function with domain A

containing a deleted neighbourhood of a ∈ Rn. Then f has the limit b ∈ Rm

at a iff

∀ε > 0, ∃δ > 0 : ∀x ∈ Rn, 0 < |x− a| < δ =⇒ |f(x)− b| < ε.

In this case we write limx→a f(x) = b or f(x)→ b as x→ a.

Note 1 δ is chosen sufficiently small such that B′δ (a) ⊆ A so f is defined on

all points x : 0 < |x− a| < δ. The function f need not be defined at a.

Note 2 The definition could be written as

∀ε > 0, ∃δ > 0 : ∀x ∈ Rn, x ∈ B′δ(a) =⇒ f(x) ∈ Bε(b) .

The following is IMPORTANT.

Theorem 3 Assume that f : A ⊆ Rn → Rm is a function with domain A

containing a deleted neighbourhood of a ∈ Rn. If f has a limit as x→ a then

the limit is unique.

Proof No new ideas; this can be proved in exactly the same way as in the

single variable case. (See Appendix) �
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1.2 Scalar-valued examples

Stress Definition 2 may be identical to that for scalar-valued functions of

one variable, but the verification of Definition 2 in any example can be far

more complicated.

Example 4 By verifying the ε - δ definition show that the scalar-valued f :

R2 → R, (x, y)T 7→ xy has limit 6 at a = (3, 2)T .

Solution Rough Work. Assume x satisfies 0 < |x− a| < δ with δ to be

chosen. In particular, individually |x− 3| < δ and |y − 2| < δ. Consider

f(x)− 6 = xy − 6 and rearrange to try to use the fact that x− 3 and y − 2

are small. For example

xy − 6 = (x− 3) (y − 2) + 2x+ 3y − 12

= (x− 3) (y − 2) + 2 (x− 3) + 3 (y − 2) .

Then, by the triangle inequality,

|f(x)− 6| ≤ |x− 3| |y − 2|+ 2 |x− 3|+ 3 |y − 2| ≤ δ2 + 5δ

since |x− 3| < δ and |y − 2| < δ. It is unnecessarily complicated to have a

δ2 factor so demand that δ ≤ 1 in which case |f (x)− 6| < δ + 5δ = 6δ. End

of Rough work.

Proof Let ε > 0 be given. Choose δ = min (1, ε/6). Assume that 0 <

|x− a| < δ. Then, for such x, the argument above shows that

|f(x)− 6| < 6δ ≤ 6
(ε

6

)
= ε.

Hence we have verified the definition of limx→a f(x) = 6. �

This could be repeated at a general point a ∈ R2.

Example 5 By verifying the ε - δ definition show that the scalar-valued f :

R2 → R, (x, y)T 7→ xy has limit ab at a = (a, b)T .

Solution in Problems Class.

Rough work Assume x satisfies 0 < |x− a| < δ with δ to be chosen. In

particular |x− a| < δ and |y − b| < δ. Then

f(x)− ab = xy − ab = (x− a) (y − b) + b (x− a) + a (x− b) .
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So, by the triangle inequality,

|f(x)− ab| ≤ |x− a| |y − b|+ |b| |x− a|+ |a| |x− b|

< δ2 + (|b|+ |a|) δ

≤ (1 + |b|+ |a|) δ,

on demanding δ ≤ 1.

End of Rough work.

Proof Let ε > 0 be given. Choose δ = min (1, ε/(1 + |a|+ |b|)). Assume

that 0 < |x− a| < δ. Then, for such x, the argument above shows that

|f(x)− 5| < (1 + |b|+ |a|) δ ≤ (1 + |b|+ |a|)
(

ε

(1 + |b|+ |a|)

)
= ε.

Hence we have verified the definition of limx→a f(x) = ab. �

1.3 Vector-valued examples

Example 6 By verifying the ε-δ definition show that the vector-valued func-

tion f : R2 → R2, given by (
x

y

)
7→
(
x+ y

xy

)
,

has limit (5, 6)T at a = (3, 2)T .

Solution With b = (5, 6)T consider

|f(x)− b|2 =

∣∣∣∣(x+ y − 5

xy − 6

)∣∣∣∣2 = (x+ y − 5)2 + (xy − 6)2 .

Would now wish to bound this in terms of |x − a|. Or, in terms of |x− 3|
and |y − 2| since both are less than or equal to |x− a|.

This looks complicated, and I certainly don’t have time to complete it in

lectures (but see Appendix). There must be a simpler approach. �
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1.4 From vector-valued to scalar-valued

Suppose that f : A ⊆ Rn → Rm. Then for each x ∈ A,

f(x) =
(
f 1(x) , f 2(x) , ..., fm(x)

)T
for real numbers f 1(x) , f 2(x) , ..., fm(x). This defines m scalar-valued func-

tions f i : A→ R for 1 ≤ i ≤ m which are called the components or component

functions of the vector-valued function f .

The next result is important, as seen in the frequency of its use. In

short, vector-valued functions have a limit if, and only if, each scalar-valued

component function has a limit.

Proposition 7 Assume that f : A ⊆ Rn → Rm is a function with domain A

containing a deleted neighbourhood of a ∈ Rn. Then limx→a f(x) = b if, and

only if, limx→a f
i(x) = bi for 1 ≤ i ≤ m.

Proof (⇒) Assume that limx→a f(x) = b. Let ε > 0 be given. Then, by

definition, there exists δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)− b| < ε.

But for any 1 ≤ i ≤ m we have |f i(x)− bi| ≤ |f(x)− b|. Hence

0 < |x− a| < δ =⇒
∣∣f i (x)− bi

∣∣ < ε.

Thus we have verified the definition of limx→a f
i(x) = bi.

(⇐) Assume limx→a f
i(x) = bi for all 1 ≤ i ≤ m. Let ε > 0 be given. Then

for each i there exists δi > 0 such that

0 < |x− a| < δi =⇒
∣∣f i(x)− bi

∣∣ < ε/
√
m. (1)

Let δ = min
{
δi : 1 ≤ i ≤ m

}
. Then

0 < |x− a| < δ =⇒ ∀ 1 ≤ i ≤ m, 0 < |x− a| < δ ≤ δi

=⇒ ∀ 1 ≤ i ≤ m,
∣∣f i(x)− bi

∣∣ < ε/
√
m,

by (1). Hence

|f(x)− b|2 =
m∑
i=1

∣∣f i(x)− bi
∣∣2 < m∑

i=1

(
ε√
m

)2

= ε2.
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That is

0 < |x− a| < δ =⇒ |f(x)− b| < ε.

Therefore we have verified the ε - δ definition of limx→a f(x) = b. �

Exercise for student. Rewrite the proof using the fact that |x| ≤
∑n

i=1 |xi|
in place of the triangle inequality.

Example 8 Using Proposition 7 show that f : R2 → R2, given by(
x

y

)
7→
(
x+ y

xy

)
,

has limit (5, 6)T at a = (3, 2)T .

Solution This is Example 6 again, though this time we are not required to

verify the definition. Instead, Proposition 7 says it suffices to prove that

i. f : R2 → R, (x, y)T 7→ x+ y has limit 5 at (3, 2)T ,

ii. g : R2 → R, (x, y)T 7→ xy has limit 6 at (3, 2)T .

Part i is the first question on the Problem Sheet while Part ii was Example

4 above. Thus the result follows. �

1.5 Sandwich Rule

For limits which are zero we have

Lemma 9 Sandwich Rule. Let f : A ⊆ Rn → Rm and h : A ⊆ Rn →
R≥0. Assume 0 ≤ |f(x)| ≤ h (x) for x in a deleted neighbourhood of a. If

limx→a h (x) = 0 then limx→a f(x) = 0.

Proof By assumption there exists δ1 > 0 such that if 0 < |x− a| < δ1 then

0 ≤ |f(x)| ≤ h (x).

Let ε > 0 be given. Then limx→a h (x) = 0 implies there exists δ2 > 0

such that if 0 < |x− a| < δ2 then |h (x)− 0| < ε, i.e. h (x) < ε since h ≥ 0.

Let δ = min (δ1, δ2) and assume x satisfies 0 < |x− a| < δ. For such x

we have |f(x)| ≤ h (x) < ε. This can be rewritten as |f(x)− 0| < ε. So we

have shown that for all ε > 0 there exists δ > 0 such that if 0 < |x− a| < δ

then |f(x)− 0| < ε, the definition of limx→a f(x) = 0. �
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For a scalar-valued example of the use of the Sandwich Rule we have

Example 10 Let

f(x) =
x4 − y6

x2 + y2
for x = (x, y)T 6= 0.

Show that limx→0 f(x) = 0.

Solution Bound the function using |x|2 = x2 + y2,

|f(x)| =
∣∣∣∣x4 − y6x2 + y2

∣∣∣∣ =
|x4 − y6|
|x|2

≤ |x|
4 + |y|6

|x|2
,

by the triangle inequality on the numerator. Next use the fact that |x| , |y| ≤
|x| to get

|f(x)| ≤ |x|
4 + |y|6

|x|2
≤ |x|

4 + |x|6

|x|2
= |x|2 + |x|4 → 0

as x → 0. Hence, by the Sandwich Rule with h (x) = |x|2 + |x|4, we have

limx→0 f(x) = 0. �

1.6 Directional Limits

Definition 11 Assume that f : A ⊆ Rn → Rm is a vector-valued function

with domain A containing a deleted neighbourhood of a ∈ Rn. The direc-

tional limit of f at a from the direction v is

lim
t→0+

f(a+tv) ,

if it exists.

Note If this limit exists it does not depend on the size of v, only it’s direction,

so v does not have to be a unit vector. Also, it is important that this is a

one-sided limit, for the limit approaching the point a along a direction v

may be different from approaching a from along −v, the ‘other side’.

Example 12 Let f : R2 \ {0} → R be given by

f(x) =
x4 − y2

x4 + y2
where x = (x, y)T .

Find the directional limits at 0 for all directions.
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Solution Let v = (u, v)T ∈ R2 be a non-zero vector. Then

f(0 + tv) =
t4u4 − t2v2

t4u4 + t2v2
=
t2u4 − v2

t2u4 + v2
→ −v

2

v2
= −1

as t→ 0+, as long as v 6= 0.

If v = 0 then v = (u, 0)T and

f(0 + tv) =
t4u4

t4u4
= 1.

In conclusion, the directional limit is −1 for all directions except for

v = (u, 0)T when the directional limit is 1. �

Be very aware of the v = 0 case, most students fail to see it.

If the limit exists we have

Lemma 13 Assume that f : A ⊆ Rn → Rm is a vector-valued function

with domain A containing a deleted neighbourhood of a ∈ Rn. Assume that

limx→a f(x) = b ∈ Rm. Then, for any non-zero vector v ∈ Rn, the directional

limit of f at a from the direction v exists and further

lim
t→0+

f(a+tv) = b.

Proof No new ideas, this is an example of a limit of a composition as seen

last year. See Problem Sheet �

In fact, the proof of Lemma 13 shows that if f has limit b at a then the

two-sided limit satisfies limt→0 f(a+tv) = b. See the appendix for a brief

discussion of the limit as t→ 0− .

In part, this lemma says

limit exists =⇒ all directional limits exist.

The converse if false - see problem sheet for examples. The reason the

converse fails is that directional limits only approach a point along straight

lines. There are many other paths leading to any given point, as seen in the

next section.

So, remember

∀v, lim
t→0+

f(a + tv) = b 6=⇒ lim
x→a

f(x) = b.
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The contrapositive of Lemma 13 is the useful

∃v ( 6= 0) ∈ Rn : lim
t→0+

f(a+tv) does not exist

OR ∃v1,v2 6= 0 : lim
t→0+

f (a+tv1) 6= lim
t→0+

f (a+tv2)

=⇒ lim
x→a

f (x) does NOT exist.

That is, we can show that limx→a f(x) does not exist by either finding a di-

rection in which the limit does not exist or by finding two different directions

with different limits.

Example 14 Show that neither

lim
x→0

x2y + y

x3 + y3
nor lim

x→0

x4 − y2

x4 + y2

exist.

Solution For the first limit f(te2) = 1/t2 which has no limit as t→ 0.

For the second limit the result directly from Example 12 where we found

two different directional limits at 0. �

1.7 Limits along curves

Definition 11 concerns the composition of f with a line t 7→ a + tv. The line

can be replaced by a curve in Rn, the image of some g : (0, η) → Rn. (A

curve, or path, will be defined more carefully later in the course.)

Definition 15 If g : (0, η) → A\{a} ⊆ Rn is a vector-valued function of

one variable such that limt→0+ g (t) = a then

lim
t→0+

f(g (t))

is called the limit of f at a along g, if it exists.
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Example 10 revisited Find the limit at t = 0 of

f(x) =
x4 − y6

x2 + y2

for x = (x, y)T 6= 0, along the curve g (t) = (t2, t3)
T

, t ≥ 0.

Solution

f(g (t)) =
t8 − t18

t4 + t6
=
t4 − t14

1 + t2
.

Then,

lim
t→0+

f(g (t)) = lim
t→0+

t4 − t14

1 + t2
=

limt→0+ (t4 − t14)
limt→0+ (1 + t2)

,

by the Quotient Rule for limits. We are allowed to use the Quotient Rule

since both limits on the right hand side exist and limt→0+ (1 + t2) = 1 6= 0.

Thus

lim
t→0+

f(g (t)) =
0

1
= 0.

�

Similarly Lemma 13 can be generalised:

Lemma 16 Assume f : A ⊆ Rn → Rm where A contains a deleted neigh-

bourhood of a ∈ Rn. Assume that limx→a f(x) = b ∈ Rm exists. Then,

for any vector-valued function of one variable g : (0, η) → A\{a} such that

limt→0+ g (t) = a, we have

lim
t→0+

f(g (t)) = b.

Proof No new ideas, it is another example of a limit of a composition. �

Note We look at the limit of f at a since f may not be defined at a. For

this reason we exclude the possibility that g takes the value a by demanding

that the image of g lies in A\{a}.

In part this result says

limit exists =⇒ limit exists along any path.

Again the converse is not true.

Lemma 13 is a special case of Lemma 16 with g (t) = a + tv.
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The contrapositive of Lemma 16 is the useful

∃g : (0, η)→ Rn \ {a} : lim
t→0+

f(g (t)) does not exist

OR ∃ g1,g2 : lim
t→0+

f (g1 (t)) 6= lim
t→0+

f (g2 (t))

=⇒ lim
x→a

f (x) does NOT exist.

In the next example f : R2 → R is a function that takes non-zero values

on non-zero points on the parabola y = x2, and 0 elsewhere.

Example 17 Show that

f(x) =

{
1 if x = (x, x2)

T
, x 6= 0

0 otherwise

has all their directional limits at x = 0 but no limit at x = 0.

Solution Problems Class. On any straight line tv = (tu, tv)T the function

is non-zero only when tv = (tu)2, i.e. t = v/u2, provided u 6= 0 .

If v ≤ 0 then there is no t > 0 satisfying t = v/u2 so f(tv) = 0 for all

t > 0 and thus limt→0+ f(tv) = 0.

If ν > 0 then f(tv) = 0 for all 0 < t < v/u2 and so, again, limt→0+ f(tv) =

0.

Finally, if u = 0 then the line is (0, tv) and the function is always 0 on

the line hence the limit is 0.

Therefore in all directions the directional limit is 0.

If we look at the curve g (t) = (t, t2)
T

we find f(g (t)) = 1 and so

limt→0+ f(g (t)) = 1.

If limx→0 f(x) exists then the limits along all straight lines and curves

would exist and have the same value. We have seen that this is not the case,

hence the limit does not exist at x = 0. �

In the Appendix the limit in this example is shown not to exist directly

by using the definition of a limit.
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1.8 Continuity of vector-valued functions of several vari-

ables

Definition 18 Assume that f : A ⊆ Rn → Rm is a function with domain

A containing a neighbourhood of a ∈ Rn. Then f is continuous at a iff

limx→a f(x) = f(a).

This has an ε - δ version:

∀ε > 0, ∃ δ > 0 : ∀x ∈ A, |x− a| < δ =⇒ |f(x)− f(a)| < ε,

or

∀ε > 0, ∃δ > 0 : ∀x ∈ Rn, x ∈ Bδ(a) =⇒ f(x) ∈ Bε(b) .

The idea of being continuous at a point is not of as much use as being

continuous in a set of points. We will be assuming that any such set will

contain a neighbourhood of any point within it. Such sets are called open

sets.

Definition 19 A subset U ⊆ Rn is an open subset if, for each a ∈ U , U

contains a neighbourhood of a. That is,

∀a ∈ U,∃r > 0 : Br(a) ⊆ U .

Note that {a} ⊆ Br(a) ⊆ U so

U =
⋃
a∈U

{a} ⊆
⋃
a∈U

Br(a) ⊆ U .

Thus we must have equality throughout, in particular

U =
⋃
a∈U

Br(a) ,

i.e. an open set U is the union of open balls.

Aside The open interval (a, b) = {x ∈ R : a < x < b} is an open set in R
(which is why it is called an open interval). The general open set in R is a

union of open intervals.

13



The box

n∏
i=1

(ai, bi) = (a1, b1)× (a2, b2)× ...× (an, bn)

is an open set in Rn. Further, the general open set in Rn, seen above as a

union of open balls, can also be written as a union of open boxes.

End of Aside.

Definition 20 Assume that f : U ⊆ Rn → Rm is a function with domain U

an open set. Then f is continuous on U if it is continuous at every point

of U .

Example 21 i. Every constant function ck : Rn → Rm defined by

ck(x) = k for all x ∈ Rn (where k ∈ Rm), is continuous on Rn.

ii. The identity function I : Rn → Rn, defined by I(x) = x for all

x ∈ Rn, is continuous on Rn.

Proof Follow immediately from the ε - δ definition, choose any δ > 0 in part

a, and δ = ε in part b. �

Example 22 Let c ∈ Rn and define f : Rn → R by f(x) = c • x for all

x ∈ Rn. Then f is continuous on Rn.

Solution If c = 0 the result is immediate. Assume c 6= 0. Let a ∈ Rn

be given. Let ε > 0 be given. Choose δ = ε/ |c|. Assume x satisfies

0 < |x− a| < δ. Then

|f(x)− f(a)| = |c • x− c • a| = |c • (x− a)|
≤ |c| |x− a| by Cauchy - Schwarz

< |c| δ = |c| (ε/ |c|)
= ε.

Hence we have verified the definition of f is continuous at a. Yet a was

arbitrary so f is continuous on Rn. �
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Questions about the continuity of one vector-valued function can al-

ways be reduced to questions about the continuity of many scalar-valued

functions because of the following.

Proposition 23 A function f : U ⊆ Rn → Rm, where U is an open set,

is continuous at a ∈ U if, and only if, its real-valued component functions

f i : U → R are continuous at a ∈ U for all 1 ≤ i ≤ m.

Proof Follows immediately from Proposition 7 : limx→a f(x) = f(a) if, and

only if, limx→a f
i(x) = f i(a) for 1 ≤ i ≤ m. �

In the next example, knowing something of the vector-valued function

tells us something about the coordinate functions.

Definition 24 The projection functions pi : Rn → R are defined by

pi(x) = pi
((

x1 x2 · · · · · · xn
)T)

= xi

for 1 ≤ i ≤ n

Note, rather confusingly, some authors use xi in place of pi and write xi (x) =

xi.

Corollary 25 The projection functions are continuous on Rn.

Proof The identity function I : Rn → Rn can be written as

I(x) = x =


x1

x2

...

xn

 =


p1(x)

p2(x)
...

pn(x)

 ,

so the pi are the coordinate functions of the identity function which we have

seen above is continuous on R. Hence result follows from Proposition 23. �

The result also follows immediately from the ε - δ definition of continuity.

Example 26 Let M ∈ Mm,n (R) be a real valued m × n matrix and define

f : Rn → Rm by f(x) = Mx for all x ∈ Rn. Then f is continuous on Rn.
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Solution Write the matrix as rows:

M =


← r1 →
← r2 →

...

← rm →

 .

Then matrix multiplication is

Mx =


r1 • x

r2 • x
...

rm • x

 .

So the i - th component function is x 7→ ri • x which we saw in Example

22 is continuous on Rn. Hence by Proposition 23 the function x 7→ Mx is

continuous on Rn. �
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1.9 Vector-valued Linear Functions of several variables

Some of the separate examples above can be combined for the functions in

question are all examples of linear functions.

Definition 27 A linear function L : Rn → Rm satisfies

L(a + b) = L(a) + L(b) and L(λa) = λL(a)

for all a,b ∈ Rn and λ ∈ R.

Note that L(0) = L(0 + 0) = L(0) + L(0) and so L(0) = 0.

The functions

• I : Rn → Rn,x 7→ x,

• Rn → R,x 7→ c • x for fixed c ∈ Rn,

• projection function pi : Rn → Rn,x 7→ xi and

• Rn → Rm,x 7→Mx for fixed M ∈Mm,n (R)

are all linear.

Example 28 The function L : R3 → R2 given by

L(x) =

(
2x+ 3y − z

10x− 5z

)
,

for all x = (x, y, z)T ∈ R3 is linear.

The function f : R2 → R2 given by

f(x) =

(
x+ 1

y + 1

)
for all x = (x, y)T ∈ R2 is not linear.

Solution In the first part of this example we can write L(x) in matrix form:

L(x) =

(
2 3 −1

10 0 −5

) x

y

z

 .

17



In the second part we can simply note that f(0) 6= 0. �

We have noted that if M ∈ Mm,n (R) then x 7→ Mx is a linear map

Rn → Rm. The next result shows that, conversely, every linear map is given

by matrix multiplication. In the proof we need the

Observation If A is an m×n matrix then, for the usual basis vectors ej ∈ Rn,

Aej = Cj the j-th column of A.

Lemma 29 Assume L : Rn → Rm is a linear map. There exists a unique

m×n matrix M such that L(x) = Mx for all x ∈ Rn.

Proof Existence Define M to be the m×n matrix

M =

 ↑ ↑ ↑ ↑
L(e1) L(e2) ... L(en)

↓ ↓ ↓ ↓

 , (2)

where the i-th column is L(ei). In general, as noted above, if A is a matrix

then Aei = Ci, the i-th column of A. Thus

Mei = L(ei)

for all 1 ≤ i ≤ n. This equality on basis vectors extends by linearity to all

points of Rn. To see what this means write a given x ∈ Rn as

x =
n∑
i=1

xiei,

with xi ∈ R. Then, since L is a linear map,

L(x) = L

(
n∑
i=1

xiei

)
=

n∑
i=1

xiL(ei)

=
n∑
i=1

xiMei, by the equality on basis vectors,

= M

(
n∑
i=1

xiei

)
= Mx,

as required.

18



Uniqueness Assume there exist two matrices with L(x) = Mx =M ′x. Then

choosing x = ej, the j-th usual basis vector in Rn, we see Cj = C ′j, i.e. the

columns of the matrices are the identical. True for all columns (1 ≤ j ≤ n)

implies M = M ′. �

Stress We say that a linear function L : Rn → Rm is ‘represented by’ or ‘is

associated with’ with the m×n matrix M .

If m = 1 then M is a 1×n matrix and it’s transpose is a vector c = MT .

In this case L(x) = c • x. This means we can recognise a linear (scalar

valued) function of x = (x1, ..., xn)
T

; it is a linear combination of the xi, it

contains no cross-terms xixj and no powers (xi)
k
, k ≥ 2.

Proposition 30 If L : Rn → Rm is a linear map then it is continuous on

Rn.

Proof In Example 26 it was shown that for a matrix M ∈ Mm,n (R) the

map x→Mx is everywhere continuous on Rn. The result then follows from

Lemma 29. �

1.10 Composition Laws

We have seen examples of Composition laws in Lemma’s 13 and 16. The

next Composition result concerns the situation

Rp g→ Rn f→ Rm.

Theorem 31 Given a function g : A ⊆ Rp → Rn which is continuous at

a ∈ A and a function f : B ⊆ Rn → Rm where g (a) ∈ B ⊆ Rn which

is continuous at g (a), then the composition function f ◦ g : A → Rm is

continuous at a.

Proof No new ideas; the proof is identical to that for the composition of

two real-valued continuous functions of one variable, seen for example, in

MATH20101. For this reason, no proof is given here. See Appendix. �

We can rewrite Example 5 as saying

Example 32 The product function p : R2 → R, (x, y)T 7→ xy is continu-

ous on R2,
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We would like to state a similar result for the quotient function (x, y)T 7→
x/y. First, this is only defined for y 6= 0 so define R† = R\{0} and q :

R×R† → R, (x, y)T 7→ x/y.

We next look upon q as a quotient function(
x

y

)
F7→
(
x

1/y

)
p7→ x

1

y
=
x

y
,

so q = F ◦ p. To apply Theorem 31 we have to show that F is continuous on

R×R†. For this we have a lemma.

Lemma 33 Assume g : A ⊆ R→ R is continuous on the open set A. Then

G : R× A→ R× R given by (
x

y

)
G7→
(

x

g(y)

)
is continuous on R× A.

Solution The function G can be written as

G(x) =

(
p1(x)

g(p2(x))

)
,

where p1 and p2 are the projection functions on R2. Then the first component

of G is continuous on R2. The second component, g ◦ p2 is, by Theorem 31,

continuous on R× A. Hence, by Proposition 23, G is continuous on R× A.

�

Note The same result would hold for G : A× R→ R× R given by(
x

y

)
G7→
(
g(x)

y

)
.

We can now combine all these results to state

Example 34 The quotient function q : R×R† → R, (x, y)T 7→ x/y is

continuous on R×R†.

The product function p : R2 → R : (x, y)T → xy and

the quotient function q : R× R† → R : (x, y)T → x/y

are everywhere continuous
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1.11 Continuity Laws

The following is the analogue of the same result for real-valued functions of

one variable and I could have omitted it and it’s proof by saying that there

are no new ideas needed, just verify the ε - δ definition of continuity. But we

can give alternative proofs using vector-valued functions.

Theorem 35 Laws for scalar-valued continuous functions Assume

that f, g : A ⊆ Rn → R are scalar-valued functions continuous at a ∈ A.

Then

a. Sum Rule f + g is continuous at a;

b. Product Rule fg is continuous at a;

c. Quotient Rule f/g is continuous at a provided that g (a) 6= 0.

Proof by application of the Composite Rule. Define α : R2 → R, (x, y)T →
x+ y. Then α is continuous on R2 (see problem sheet).

Define F : A→ R2 by

F(x) =

(
f(x)

g(x)

)
,

continuous at a by Proposition 23. Then

f + g = α ◦ F, fg = p ◦ F and
f

g
= q ◦ F,

where p is the product function of Example 32 and q the quotient function

of Example 34. The results then follow from Theorem 31. �

Definition 36 A polynomial function p : Rn → R is a sum of products

of variables from Rn.

Instead of attempting to write the general polynomial function I illustrate

with an example. In this example I will denote a constant function x 7→ c

by c (x). So c represents both a scalar and a function. Importantly we know

that constant functions are everywhere continuous.

Example 37 An example of a polynomial on R3 would be

p(x) = x2z + yz3 + 3 =
(
p1(x)

)2
p3(x) + p2(x)

(
p3(x)

)3
+ 3 (x)

=
((
p1
)2
p3 + p2

(
p3
)3

+ 3
)

(x) ,

for all x ∈ R3.

21



Now we see the use of projection functions. In this example, p = (p1)
2
p3+

p2 (p3)
3

+ 3, a product and sum of functions continuous on R, hence p is

continuous on R. This is true in general.

Corollary 38 a) A polynomial function p : Rn → R given by a polynomial

in the n variables is continuous on Rn.

b) A rational function r given by a ratio of polynomial functions r = p/q on

Rn is continuous at all points where it is defined (i.e. points x ∈ Rn such

that q (x) 6= 0.)

Proof Immediate. �

Note We can give Rules for Limits where we assume that the limits of f and

g in Theorem 35 exist at a. See Appendix.
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Appendix for Section 1

1. Uniqueness of limit

Theorem 3 Assume that f : A ⊆ Rn → Rm is a function with domain A

containing a deleted neighbourhood of a ∈ Rn. If f(x) has a limit as x→ a

then the limit is unique.

I claim in the notes that this can be proved in exactly the same way as in

the scalar-valued single variable case. So here I have taken that scalar-valued

single variable found in the notes for MATH20101 and rewritten it in only a

minor way.

Proof Assume that for the function f the limit is not unique. Let b1 6= b2

be two of the different limit values (there may be more than two). Choose

ε =
|b1 − b2|

3
> 0.

From ε - δ definition of limx→a f(x) = b1 we find δ1 > 0 such that 0 <

|x− a| < δ1 implies

|f(x)− b1| < ε. (3)

Similarly, from the ε - δ definition of limx→a f(x) = b2 we find δ2 > 0 such

that 0 < |x− a| < δ2 implies

|f(x)− b2| < ε. (4)

Choose δ = min (δ1, δ2) > 0 and assume x0 satisfies 0 < |x0−a| < δ. For

x0 both (3) and (4) hold. Hence

|b1 − b2| = |b1 − f(x0) + f(x0)− b2|

≤ |b1 − f(x0)|+ |f(x0)− b2|

by the triangle inequality,

< ε+ ε by (3) and (4) ,

= 2ε

=
2 |b1 − b2|

3
.

Dividing through by |b1 − b2| 6= 0 we get 1 < 2/3, a contradiction. Hence

the assumption is false and so, if it exists, limx→a f(x) is unique. �
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2. Example of limit

Example 6 By verifying the ε - δ definition show that the vector-valued f :

R2 → R2, given by (
x

y

)
7→
(
x+ y

xy

)
,

has limit (5, 6)T at a = (3, 2)T .

Solution With b = (5, 6)T we saw in the notes the first equality in

|f(x)− b|2 =

∣∣∣∣(x+ y − 5

xy − 6

)∣∣∣∣2 = (x+ y − 5)2 + (xy − 6)2

=
(

(x− 3) + (y − 2)
)2

+

+
(

(x− 3) (y − 2) + 2 (x− 3) + 3 (y − 2)
)2

Then, by using the Triangle Inequality,

|f(x)− b|2 ≤
(
|x− 3|+ |y − 2|

)2
+
(
|x− 3| |y − 2|+ 2 |x− 3|+ 3 |y − 2|

)2
Assume |x− a| < δ, when |x− 3| < δ and |y − 2| < δ. Thus

|f(x)− b|2 ≤ (δ + δ)2 +
(
δ2 + 5δ

)2
.

Assume δ ≤ 1 to simplify this as

|f(x)− b|2 ≤ 40δ2.

Let ε > 0 be given. Assume δ = min
(
1, ε/
√

40
)

and 0 < |x− a| < δ. For

such x we have

|f(x)− b| ≤
√

40δ ≤
√

40

(
ε√
40

)
= ε.

Hence we have verified the ε - δ definition of limx→a f(x) = b. �

3. Simplification of previous example

Remark If x ∈ Rn then |x| ≤
∑n

i=1 |xi|.

Proof Write

x =
n∑
i=1

xiei,
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where {ei}1≤i≤n is the standard basis of Rn and xi are the coordinates of x.

Then

|x| =

∣∣∣∣∣
n∑
i=1

xiie

∣∣∣∣∣ ≤
n∑
i=1

∣∣xiie∣∣ by the triangle inequality,

=
n∑
i=1

∣∣xi∣∣ |ei| = n∑
i=1

∣∣xi∣∣ .
Example 6 By verifying the ε - δ definition show that the vector-valued f :

R2 → R2, given by (
x

y

)
7→
(
x+ y

xy

)
,

has limit (5, 6)T at a = (3, 2)T .

Solution With b = (5, 6)T ,

|f(x)− b| =

∣∣∣∣(x+ y − 5

xy − 6

)∣∣∣∣
≤ |x+ y − 5|+ |xy − 6| by remark above,

= |(x− 3) + (y − 2)|+ |(x− 3) (y − 2) + 2 (x− 3) + 3 (y − 2)|

≤ |x− 3|+ |y − 2|+ |x− 3| |y − 2|+ 2 |x− 3|+ 3 |y − 2|

by the triangle inequality

≤ δ + δ + δ2 + 2δ + 3δ

≤ 8δ if δ ≤ 1.

So take δ = min (1, ε/8) . �

4. Directional limit.

The directional limit in the direction v 6= 0 was defined to be limt→0+ f(a + tv).

What does the left hand limit limt→0− f(a + tv) represent? Write η = −t so

η → 0+ as t→ 0−. Then

lim
t→0−

f(a + tv) = lim
η→0+

f(a + (−η) v) = lim
η→0+

f(a + η (−v)) ,

which is the directional limit in the direction −v.
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5 Linear Functions are continuous

In the lectures we showed that linear maps are everywhere continuous by

using the fact that the maps x 7→Mx, where x ∈ Rn and M ∈Mm,n (R) are

everywhere continuous. Here we give an alternative proof. First

Lemma 39 If L : Rn → Rm is a linear map then there exists a positive

constant C (depending on L) such that |L (t)| ≤ C |t| for all t ∈ Rn.

Proof Given t ∈ Rn write it as t =
∑n

i=1 t
i
ie where {ei} is the usual basis

of Rn. Then, by linearity of L,

L(t) =
n∑
i=1

tiL(ei) .

Then, by Cauchy-Schwarz,

|L(t)|2 ≤
n∑
i=1

(
ti
)2 n∑

i=1

L(ei)
2 = |t|2C2,

if we choose

C =

(
n∑
i=1

L(ei)
2

)1/2

.

�

Now our alternative proof that linear functions are continuous is imme-

diate.

Proposition 30 All linear maps L : Rn → Rm are everywhere continuous.

Proof Let L : Rn → Rm be a linear map. So by previous result there exists

C > 0 such that |L(t)| ≤ C |t| for all t ∈ Rn.

Let a ∈ Rn be given. Let ε > 0 be given. Choose δ = ε/C. Assume

x ∈ Rn satisfies |x− a| < δ. Then

|L(x)− L(a)| = |L(x− a)| since L is linear,

≤ C |x− a|
< Cδ = ε.

Hence we have verified the δ − ε definition that f is continuous at a. Since

a was arbitrary f is everywhere continuous. �
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6 Linear Functions have directional limits

If L : Rn → Rm is linear and a,v ∈ Rn then

lim
t→0+

L(a + tv) = lim
t→0+

(L(a) + tL(v)) = L(a) .

7. Composition Results for limits

In the lectures the following was unproved and left to the problem sheet.

Lemma 16 Assume f : A ⊆ Rn → Rm where A contains a deleted neigh-

bourhood of a ∈ Rn. Assume that limx→a f(x) = c ∈ Rm exists. Then,

for any vector-valued function of one variable g : (0, η) → A\{a} such that

limt→0+ g (t) = a, we have

lim
t→0+

f(g (t)) = c.

This is called the limit of f at a along g.

This result concerns the composition f ◦g and the proof is simply a rewrit-

ing of the one for scalar-valued functions of one variable as seen, for example,

in MATH20101. To get the proof to work examine the outer function, f , first.

Proof Let ε > 0 be given. From the ε - δ definition that limx→a f(x) = c

there exists δ1 > 0 such that

0 < |x− a| < δ1 =⇒ |f(x)− c| < ε. (5)

Next choose ε = δ1 in the ε - δ definition of limt→0+ g (t) = a to find 0 < δ2 <

η such that if 0 < t < δ2 then |g (t)− a| < δ1.

Note that in the statement of the result we are assuming g : (0, η)→ Rn\
{a}, in particular, g (t) 6= a for any 0 < t < η. Write this as 0 < |g (t)− a|.
Then 0 < t < δ2 implies 0 < |g (t)− a| < δ1. Hence, by (5) with x = g (t) ,

we find that |f(g (t))− c| < ε.

That is, we have shown that for all ε > 0, there exists δ2 > 0 such that 0 < t <

δ2 implies |f(g (t))− `| < ε. This is the ε - δ definition of limt→0+ f(g (t)) = c.

�

This result was used in the notes to prove
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Example 17 Show that

f(x) =

{
1 if x = (x, x2) , x 6= 0

0 otherwise

has no limit at x = 0.

We prove this from the definition of the limit.

Solution We will show that the negation of the definition of the limit holds.

The definition states

∃b ∈ R,∀ε > 0, ∃δ > 0 : ∀x ∈ Rn, 0 < |x− a| < δ =⇒ |f(x)− b| < ε.

The negation states

∀b ∈ R,∃ε > 0, ∀δ > 0 : ∃x ∈ Rn, 0 < |x− a| < δ and |f(x)− b| ≥ ε. (6)

Let b ∈ R be given. In any disc about the origin (i.e. for any δ > 0) we

can find points x0 : f(x0) = 0 and x1 : f(x1) = 1. Then

1 = |f(x1)− f(x0)| = |(f(x1)− b)− (f(x0)− b)|
≤ |f(x1)− b|+ |f(x0)− b|

by the triangle inequality. This means that at least one of |f(x1)− b| and

|f(x0)− b| must be ≥ 1/2. Hence we can choose ε = 1/2 and (6) will hold.�

Hopefully this is sufficiently logically complicated to illustrate the virtue

of looking at limits along curves.

If Lemma 16 concerned the situation

R g→ Rn f→ Rm,

we can next deal with the more general

Rp g→ Rn f→ Rm.

To be consistent with occurrences of composition later in the course we

will write the vectors in Rp as x and in Rn as y (unfortunately this is not

consistent with Lemma 16).

In the previous result we assumed f had a limit at a, but not necessarily

defined at a. For this reason we had to omit a from the image of g. In the

following result we simplify matters by assuming f is continuous, it is then

necessarily defined at all points.
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Theorem 40 Assume that g : Rp → Rn has a limit at a ∈ Rp and write

b = limx→a g (x). Assume that f : Rn → Rm is continuous in an open

neighbourhood of b. Then

lim
x→a

f(g (x)) = f(b) .

Alternatively the conclusion can be written as

lim
x→a

f(g (x)) = f
(

lim
x→a

g (x)
)
.

Proof Let ε > 0 be given. From the ε - δ definition that f is continuous at

b there exists δ1 > 0 such that

|y − b| < δ1 =⇒ |f(y)− f(b)| < ε. (7)

Next choose ε = δ1 in the ε - δ definition of limx→a g (x) = b to find δ2 > 0

such that if 0 < |x− a| < δ2 then |g (x)− b| < δ1. Then by (7) with

y = g (x) we find that |f(g (x))− f(b)| < ε.

That is, we have shown that for all ε > 0, there exists δ2 > 0 such that

0 < |x− a| < δ2 implies |f(g (x))− f(b)| < ε. This is the ε - δ definition of

limx→a f(g (x)) = f(b) .

�

If we assume further that g is continuous at a then we get

lim
x→a

(f ◦ g) (x) = lim
x→a

f (g (x)) = f
(

lim
x→a

g (x)
)

= f (g (a)) = (f ◦ g) (a) .

That is, f ◦ g is continuous at a. This result was stated in the lectures,

without proof, as

Theorem 31 Given a function g : U ⊆ Rp → Rn which is continuous at

a ∈ U and a function f : V ⊆ Rn → Rm, where g (a) ∈ V, which is continuous

at g (a), then the composition function f ◦ g : U → Rm is continuous at a.

A special case of this is when g : R→ Rn, t 7→ a + tv for some a,v ∈ Rn.

Proposition 41 If f : Rn → Rm is continuous at a ∈ Rn then, for all

v ∈ Rn, f(a + tv) is continuous at t = 0.
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The converse is not true. Even if f(a + tv) is continuous at t = 0 for all

v ∈ Rn, it may be that limx→a f(x) does not exist. And if the limit were to

exist it may not equal f(a), i.e. f might not be continuous at a.

That is

f continuous at a =⇒ ∀v ∈ Rn, f (a + tv) is continuous at t = 0,

∀v ∈ Rn, f (a + tv) is continuous at t = 0 6=⇒ f continuous at a.

8. Limit Laws

Though Proposition 7 reduces the verification of limits for vector-valued

functions to scalar-valued functions, can the verification for scalar-valued

functions be simplified?

One way is to build a function from ‘simpler’ functions or, conversely

break down a given ‘complicated’ function into ‘simpler’ ones. Since we can

only multiply and divide scalars not vectors, the first result concerns scalar -

valued functions.

Theorem 42 Limit Laws for Scalar-Valued functions Assume that

f, g : A ⊆ Rn → R are scalar-valued functions with domain A containing a

deleted neighbourhood of a ∈ Rn. If limx→a f(x) = b ∈ R and limx→a g (x) =

c ∈ R then

a) Sum Rule limx→a (f(x) + g (x)) = b+ c;

b) Product Rule limx→a (f(x) g (x)) = bc;

c) Quotient Rule limx→a

(
f(x)

g (x)

)
=
b

c
, provided that c 6= 0.

Proof Use the method seen in the proof of Theorem 35. Define α : R2 → R,

(x, y)T → x + y. Then α is continuous on R2 (see problem sheet). Define

F : A ⊆ Rn → R2 by

F(x) =

(
f(x)

g(x)

)
,

for which

lim
x→a

F(x) =

(
limx→a f(x)

limx→a g(x)

)
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exists by assumption.

Then

f + g = α ◦ F, fg = p ◦ F and
f

g
= q ◦ F,

where p is the product function of Example 32 and q the quotient function

of Example 34. The results then follow from Theorem 40. �

For vector - valued functions we have

Theorem 43 Limit Laws for Vector-Valued functions Assume that

f ,g : A ⊆ Rn → Rm are vector-valued functions while h : A ⊆ Rn → R
is scalar valued. Assume the domain A contains a deleted neighbourhood of

a ∈ Rn. If limx→a f(x) = b ∈ Rm, limx→a g(x) = c ∈ Rm and limx→a h(x) =

` then

a) limx→a (f(x) + g (x)) = b + c;

b) limx→a (h (x) f(x)) = `b;

c) limx→a (f(x) • g (x)) = b • c.

Proof By Proposition 7 parts a. and b. are equivalent to limx→a (f i (x) + gi (x)) =

bi + ci and limx→a h (x) f i (x) = `bi for 1 ≤ i ≤ n. Yet these latter results, on

scalar-valued functions alone, follow from Theorem 42.

Part c. has been left to the Problem Sheet. �
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